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A I R F O I L  C A S C A D E  I N  U N S T E A D Y  E D D Y  F L O W  

V. A. Yudin UDC 533.697:532.0301 

1. Introduction.  In passing through a row of blades in a turbomachine, a nonuniform fluid stream undergoes a change. 

To date, the question of how drastic the change is and how it affects the hydrodynamic characteristics of the row has not been 

adequately studied. Theoretical analyses have been performed mainly with the use of a two-dimensional model of flow under 

the assumption that the flow is nonuniform and the loading on the airfoils is small. In this statement of  the problem, known 

as the problem of a cascade in an unsteady eddy flow, the disturbance of the flow induced by the airfoils is of purely potential 

character. Due to the exponential decrease of the disturbance, the flow nonuniformity upstream and downstream the cascade 

remains invariant. In recent years the availability of powerful computers made it possible to perform the calculations on the 

basis of the full Euler or Navier-Stokes equations to obtain the flow pattern behind the cascade [1, 2]. In view of the 

complexity of the model, only sporadic results have been obtained, which does not enable us to study the dependence of the 

flow structure on the basic parameters of the cascade. 

In the present paper, as in the problem of a cascade in unsteady eddy flow, the nonuniformity is assumed to be small, 

but the restriction on the loading on airfoils is removed. The airfoils may be of arbitrary shape. We consider the problem 

linearized on a steady stream, which corresponds to constant (at infinity) flow around the cascade. 

2. Statement of  the Problem. Let us consider an airfoil cascade in the stream of an ideal incompressible liquid in the 

plane of the complex variable z = x + iy. We assume the arbitrary airfoils in the cascade to be smooth or with a sharp trailing 

edge. Let us suppose that the complex stream velocity at infmity ahead of the cascade can be presented as V = V 1 o, + d, 

where V l~  = con~, and d = J(x, y + ut) = d(x, y + ut + h I) is the small nonuniformity. In the general case this is eddy 

nonuniformity (rot J ;~ 0) propagating in the y direction as a periodic traveling wave with velocity u (Fig. 1). We suggest an 

arbitrary period of nonuniformity h I and a cascade pitch h 2 that satisfy the condition H = Nlh 1 = N2h 2 (H is the full period, 

N 1 and N 2 are integers). Let us neglect the transient vortex wakes which trail down the airfoils due to the change in circulation 

(quasisteady-state statement of the problem). Moreover, we assume that there is no reverse stream near the cascade, while the 

eddying at infinity ahead of the cascade is equal to zero: 

Y*hl 0 J  8 1  
lira fQ(x, ~l)Vt.~dr I = 0, V~| = limVe, , fl = _._z _ ....2- (2.1) 

. t ~  - -  ~, x.-,  - , -  = t~x B y "  

Let us present the complex velocity of a liquid as V(z, t) = ~'o(Z) + +~(z, t), I q  < <  IX)ol, where Vo is the complex 
velocity of the constant (at infinity) flow past the cascade V 1 oo, and v is the sought-for small addend. Then we decompose 

into the vortex ~1 and the potential V 2  components: v = Vl + ~2. The complex velocity ~1 is induced by the vortex 

nonuniformity specified at infinity ahead of the cascade J and expressed by the Biot-Savart  formula: 

~l(z, t) = ~ j , ,  a - ~ ' r = ~ + /2/' fl = 8x - 8"-'7" (2.2) 
S 

where S is the cascade exterior. 

From the assumptions on the absence of  reverse stream and zeroth eddying at infinity ahead of  the cascade, the 

following estimate is valid [3]: 

I;11 < 0,5/ (maxlQ-v . l/u + 0,S axt .l), (2.3) 
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This estimate ensures the smallness of the nonuniformity vl in the whole stream domain on the basis of the data on its smallness 
at infinity ahead of the cascade. Inequality (2.3) allows for the use of the linearized Helmholtz equation 

~ + a~ V + a_~Q V , 
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TABLE 1 

4,16 I -0,0083 

4,11 [ --0,0076 

Not accounting for evolving wakes 

-0,0036 I 0,0614 I-0,0459 I-0,0094 I-0,0617 I 0,0037 

Accounting for evolving wakes 

-o.oo, I o.o~, t-o.o,~ I-o.o11, I-0.o,o~ [ 0.0o~1 

1"42 

0,0074 

0,0059 

TABLE 2 

2y I Yll 

0,2.38 [ --O,OSll 

0,283 [ -0,0827 

Not accounting for evolving wakes 

-o.1,, I-o.o09~ f-0.o6,, I 0.0,9 I -o.141 
Accounting for evolving wakes 

-o.12, I 0.o14 Io.oo,6 I o.~,2 1 o.1~6 

Y41 }'42 
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which, given the known vorticity fl~. at infinity ahead of the cascade, enables one to determine the vorticity in the whole stream 

domain S. 
The complex velocity v2(z, t), by definition, is an analytic function with respect to z in the stream domain S, which 

satisfies the following conditions: the liquid does not flow past the airfoils V2n(Z, t) = --Vtn(Z, t) [ zE  L k, L k is the contour of 

the k-airfoil in the cascade, k = 0, + 1 . . . . .  n is the normal to it (which follows from Vn(Z, t) = V0n(Z, t) = 0)], the stream 
is periodic in the y direction ~2(z, t) = ~2(z + ill, t), the velocity of the liquid at infinity and at fixed points of  trailing edges 
of smooth airfoils is equal to zero, or the velocity is f'mite at sharp trailing edges of the airfoils (Zhukovskii 's condition). 

From the Euler equation written in Lamb's  form we obtain the formula for calculating the pressure at the airfoil 

cascade: 

mat + V - V • r o w  = - ~ V p .  (2.5) 

Integrating (2.5) along the airfoil and taking into account the condition V n = 0, we obtain 

1 2 a 
p(a, t) = - ~pV (c,, t) + p(O, t) - O~t f V(u, Odt, (2.6) 

O. 
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where o is the arc coordinate of the initial airfoil measured from the trailing edge V(0, t) = 0. The expressions tbr the total 

hydrodynamic force and moment are obtained from (2.6) by integrating the pressure along the contour of  the airfoil. 
3. Numerical  Method.  To solve the problem (2.2) and (2.4) we expand the vorticity f2 and velocity VX in Fourier series 

with respect to time (i # j): 

Q(z, 0 = ~ Q,(z)exp(-  jtratt), ~t(z, t) = ' ~  %(z )exp( -  jtrott), o~ t = 2aru/ht. (3.1) 
r -O  r -O  

Substituting (3.1) into (2.1) with the use of the relationship 

f~(z  + Imh v t) = n ( z . t  + , , the /u)  

and the equality 

we obtain 

I - ~-cth~(z - ~), 
z - ~  - i~t-t 

N2-1 

I f f Q(/j) X exp(- jrmW)cth H (z - ~ - irnh2)d.,~dr I. (3.2) ~(~) -- z~--'S 
"$0 m-O 

Here ~b = 21rN1/N2, S O is the interblade domain of the initial airfoil cascade (Fig. 2). Due to the exponential decrease of the 
functions (V 0 - V 1 o.) and ~2 as the distance x increases, one may approximately assume, in calculating the integral (3.2), that 
already at some Finite distance [Xof upstream of the cascade front ~l(x, t) = J(x, y + ut) and fl(z, t) = f~o.(z, 0,  with x < 

x o. Along with the condition (2.1), this makes it possible to replace the integration with respect to the infinite domain S o by 

that with respect to the semi-inf'mite domain S x = SoU {x > Xo}. 

Let us then denote the ordinate of the point of intersection of the axis x = x o with the streamline with velocity ~r o 

which passes through the point (~, ~7) as 7/0 = 7/o(~, ~/), and the time it takes for the elements of  volume to travel from the point 

(Xo, 70) to the point (~, 7) moving with the velocity Vo, as t o = to(G, n): 

t.(r ~) =L:, as v~s) (3.3) 

(Ln0~ is the segment of  the streamline up to the point (~, 7/)). Then from Eq. (2.4) fl(~, 7/, 0 = fl(Xo, 7/o, t - to), and we 
obtain the formula 

2 0 ~2 -t 
ut,(z ) = " ~  f exp(/nat(t o - ~ , l u ) )  E e x p ( -  ]rrmp) x cth "~ (z - ~ - lmh2)dlddn (3.4) 

SxO m - 0  

where fir0 is the coefficient of  the Fourier expansion 

f~(xo, Y, 0 = ~ Q,oexp( - f i ra l ( t  -- y / U ) ) .  (3.5) 
t=O 
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Formulas (3.3)-(3.5) allow for the eddy-velocity component V1 tO be calculated from the known main stream ~'0 and 

the nonuniformity J of the windstream. Given the function ~t, the problem of searching for potential velocity component ~2 

can be solved as in [4]. 
4, Convergence of the Algorithm, Calculation Examples. When computing the integral (3.4), the semi-infinite 

domain Sxo was truncated to the right, i.e., the computations were performed up to x = Xoo (Fig. 2). To check the convergence 

of this parameter of the algorithm, the computations were carried out for Xo0/h 2 = 1, 2, 3 . . . . .  10. The values of the 

circumferential force component Y(t 1) for three fbxed instants of time t 1 = 0, T/3, 2T/3 (T = hl/U is the time period) are 

presented in Fig. 3. With 4' = 2~r (one airfoil in a period), the forces and moments showed agreement up to the third decimal 

place in all calculations already when Xo0/h 2 > 3 (Fig. 3a). With ~b = 7r/4 (four airfoils in a period), to ensure accuracy, the 

calculations should be performed up to Xoo/h 2 = 5-6 (Fig. 3b). This result is consistent with known theoretical and 

experimental data which indicate that, as the distance x increases, the influence of the flow nonuniformity is greater the smaller 

the phase shift ~b between the adjacent airfoils. 

The second parameter governing the calculation accuracy is the number of cells in the calculational domain Sxo (mesh 

density). In the algorithm the mesh density was prescribed by the number N of points of splitting of the entry x = x o. The 

values of the stream functions ~b0n and the steady flow V o were calculated at these points (x o, %n), n = 1 . . . . .  N. The unit 

calculation cells Dkn were obtained from the intersection of the domain between two neighboring streamlines 4'on and 4'0n+1 
with the vertical section D k. The cells Dkn were constructed smaller the closer they were to the cascade airfoils (see Fig. 2). 

Values of  the force Y(t t) (q = 0, T/3, 2T/3) for N = 20, 25, 30 . . . . .  60 are presented in Fig. 4. The calculations 

point to considerably slow convergence of the algorithm in the mesh density. Use of an IBM AT-286 computer made difficult 

the calculations for N > 60 (for N = 60 the total number of cells is 10,000). For comparison, the number of cells used in 

calculating the two-dimensional flows in the cascade domain in [1, 2] is greater by one or two orders of magnitude. The 

satisfactory calculation accuracy for - 10,000 cells is due to the linear character of the problem. The algorithm takes into 

account the fact that the value of vorticity is preserved along the stream tube of steady flow. Since the stream tubes can be 

calculated with sufficient accuracy in advance, the one-dimensional problem is solved for each of them. The number of stream 

tubes is N. 
Figure 5 presents as a test case the results of calculation of the limiting case for an airfoil cascade flown at small angle 

of attack (at the instant of time t = 0). As one would expect, in this case the evolution of vortex wakes, which is specified by 

the function J, appeared to be small. The results of calculation of transient forces are close to those for the model neglecting 

the evolution [4]. Table 1 shows the results of comparison of separate harmonics (first four) Ynl and Yn2 of the circumferential 

force component 

ca = 2ar l h,  

as well as the value Ly = [(max (Y(t)) - -  min(Y(t))]/Y 0 which characterizes the total level of  the exciting forces. The slight 

discrepancy in the data is due to the fact that the program was designed for calculating arbitrary airfoils. Therefore, the plate 

had to be simulated also by the airfoil, which results in a slight deformation of the vortex wakes. 
The evolution of the wakes when they pass through a typical compressor cascade is shown in Fig. 6. A comparison 

with the results of [5] is presented in Table 2. When passing through the cascade the vortex wakes are subject to significant 

changes, which result (Table 2) in a significant change in the values of amplitude of separate harmonics of the exciting forces. 

Along with this the total level of the exciting forces ky varies slightly. A qualitatively similar result was obtained when the 

compressor cascade was replaced by a cascade of  circles (heavily loaded cascade). In this case the evolution of wakes appeared 

to be even more pronounced and the relative contribution of separate harmonics of the excitation force was greater. However, 

the parameter Xy changed slightly as before. This is presumably due to the fact that the evolution of  wakes leads to a substantial 

redistribution of separate harmonics in the wake itself while retaining the integral characteristic of  the velocity dip in it as a 

whole. 

This study is performed within the framework of Project No. 93-013-16653 of the Russian Foundation for Fundamental 

Research. 
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